

Final conference

20 November 2018 | Brussels

Sustainable exploitation of biomass for bioenergy from marginal lands (MagL) in Europe

Understanding Marginal Lands – challenges and expectations

Dr. Vadym Ivanina Institute of Bioenergy Crops and Sugar Beet, Ukraine

Partner

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 691874

What is marginal land?

1) Economic definition – that is an area where a cost-effective production is not possible, under given site conditions, cultivation techniques, agricultural policies as well as macro-economic and legal conditions" (Schroers 2006); where revenue is just equal to costs of production (Galbraith 1932)

2) Physical and production definition is based on soil suitability and restrictions are often adopted by soil scientists and agronomists for the purpose of land use planning. It refers to land of poor quality for agriculture or susceptible to erosion or other degradation (Lal 2005)

Terms of marginal land:

unproductive land, waste land, under-utilized land, idle land, abandoned land, degraded land, surplus land, conservation reserve programme land (CRP), barren land, carbon-poor land, fallow land, set aside land, waste land, reclaimed land, contaminated land, etc.

Brussels

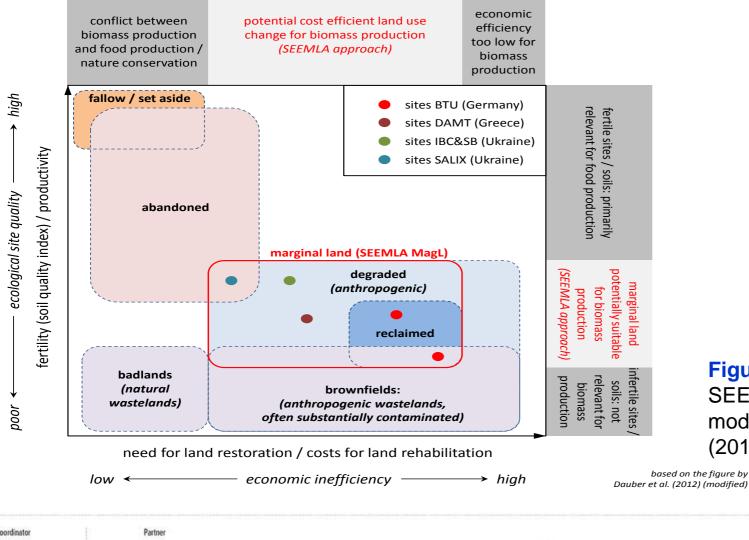


Figure 1. Terms attributed to marginal land in the SEEMLA approach (developed by BTU-CS) modified after and adapted from Dauber et al. (2012)

Project coordinator

Sustainable exploitation of biomass for bioenergy from marginal lands in Europe

SEEMLA approach for MagLs definition and classification

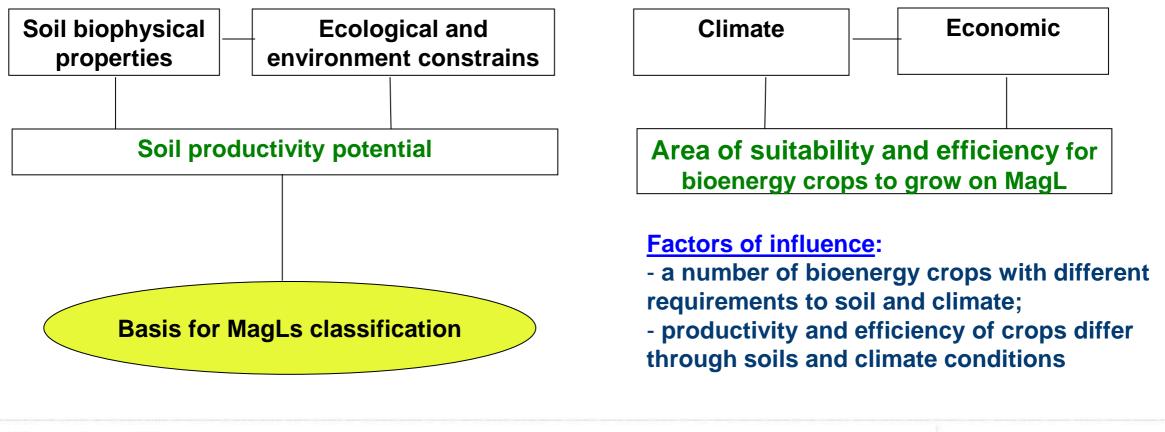
ordinator

휛

Partner

ifeu statute to attent and the statute attent attent attents a

C ALCOMAL & THEN)



12

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 691874

Figure 2. Criteria of MagLs definition and classification by SEEMLA

Project coordinato

Partner

Table 1. Scientific vision to key soil properties of MagLs definition

	Criteria of land marginality								
Author	soil biophysical						ecologic		
	low fertility	shallow rooting	unfavo- rable texture	saline	sodicic	acidic	overwet	steep slop (eroded)	contami- nated
Gopalakrishnan et al. (2011)							+	+	+
Confalonieri et al. (2014)		+	+	+	+	+	+	+	
Orshoven et al. (2014)		+	+	+	+	+	+	+	
Milbrandt & Overend (2009)	+	+	+	+	+	+	+		
Liu et al. (2011)	+	+	+	+	+	+	+	+	+
Kang et al. (2013)	+			+	+		+	+	

Project coordinator

b-tu Brandenburg University of Technology

Table 2. MagLs classification:

Categories of MagL	Criteria
1. Shallow rooting	low soil depth with down hard pan
2. Low fertility	low ranking scores (SQR)
3. Stony texture	high volume percentage of stones
4. Sandy texture	high sand percentage
5. Clay texture	high clay percentage
6. Salinic	high content of salts
7. Sodicic	high exchangeable sodium content
8. Acidic	low pH
9. Overwet	low underground water table, gleyic color pattern
10. Eroded	steep slop
11. Contaminated	high content of nitrate in groundwater

b-tu Brandenburg University of Technolog

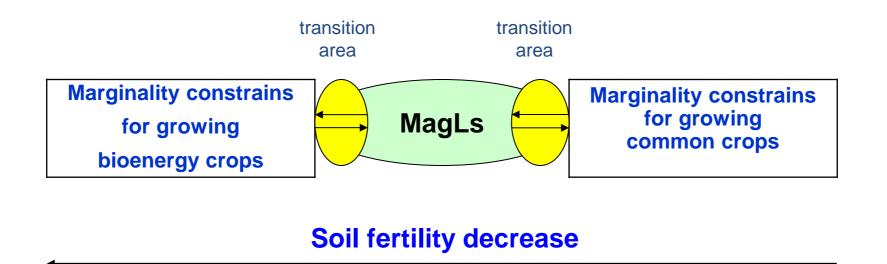


Figure 3. Two constrains of marginality indicators in bioenergetics

Gopalakrishnan et al. (2011) emphasized that the key features of current definitions of marginal lands, based on economic, soil health, and environmental criteria, require the development of new methods that can identify land that is marginal for conventional crops but not marginal for bioenergy crops.

Project coordina

UFN

Sustainable exploitation of biomass for bioenergy from marginal lands in Europe

Table 3. Regulation EU(1305)2013 – indicators of MagLs for conventional agriculture

Category	Criterion	Threshold (indicator) for conventional agriculture				
	Soils unfavorable bio	ophysical properties				
Shallow rooting depth	Depth of soil to hard pan	≤ 35 cm				
Low natural fertility	Fertility rating	SQR scores ≤ 40				
Unfavorable textured	Relative abundance of clay, sand or	≥ 10 volumetric % of rocks, boulder				
and stoniness	coarse material in topsoil	Sand, loamy sand ≥40% within 100 cm				
		≥ 50% clay				
Salinic	Content of salts	≥ 3.2 dS/m in topsoil				
Sodicic	Content of exchange sodium	≥ 4.8 ESP within 100 cm				
Acidic	Content of hydrogen ion	pH (H2O) ≤ 5,5 in topsoil				
Overwet	Soil wetting and gleyic	Gleyic color pattern within 40 cm				
		Wet 80 cm > 6 months				
	Ecologic c	onstrains				
Eroded	Slope steepness	≥ 12%				
Contaminated	Presence of nitrate in groundwater	≥ 10 mg L−1				
b-tu Brandenburg University of Technology Cathon - Senthenburg	ifeu statut and international statu and international statut and intern	Beneficial and a strategy and a stra				

Table 4. Range of MagL indicators in bioenergetics

Categories of MagL	Criteria	Range of indicators
shallow rooting	low soil depth with down hard pan	within 25- 35 cm
low fertility	ranking scores (SQR)	less 40
stony texture	high volume percentage of stones	within 10-2 0%
sandy texture	high sand percentage	within 40- 60%
clay texture	high clay percentage	within 50- 60%
salinic	high content of salts	within 3.2 - <mark>16</mark> dS/m
sodicic	high exchangeable sodium content	within 4.8 -8%
acidic	pH level	within 4-5,5
overwet	low underground water (over 6 months), gleyic color pattern	within 0-80 cm within 0-40 cm
eroded	steep slop	within 12-15 %
contaminated	content of nitrate in groundwater	over 10 mg L ⁻¹

b-tu Brandenburg University of Technology

Sustainable exploitation of biomass for bioenergy from marginal lands in Europe

Table 5. Possible MagLs in soil classification of Department of Agriculture, USA

		-		
Order	Soil characteristics	% of world area	Involving to bioenergy	Marginality features
Entisols	Without genetic horizons either young in years or parent material only,	16		Young soils, some suitable for
	some soils occur on steep slop			bioenergy;
Inceptisols	With only slight profile development (area of mountings, Asia), some	9	Part use	- Low SQR;
	rich in humus			- Some meet erosion and
Andisols	Formed on volcanic ash, they have high water-holding capacity, some	1		salinity hazards
	soils are fertile			
Gelisols	Tundra soil with slight profile	8,6	No use	Permafrost for 2 years or more
Histosols	Undergone little profile, thick layer of organic material	1	No use	Overwetting
Aridisols	With horizon of accumulation carbonate (calcic), gypsum (gypsic),	12	Part use	Salinity, sodicity, hardpan,
	soluble salts (salic), exchangeable sodium (natric)			dryness
Vertisols	With more than 30% of clay, shrinking and swelling	2,5	Part use	Unfavorable texture
Molisols	Best fertile soil	7	No use	Erosion
Alfisols	Higher weathered than molisols, high fertility	10	No use	Erosion
Ultisols	Medium fertile, relatively acidic B-horizon	9	Part use	Acidity, erosion, low SQR
Spodosols	Soils of fir-forest of wet and cold climate, poor fertility	3	Part use	Acidity, overwetting, low SQR
Oxisols	Most highly weathered soil of Tropics	8	Part use	Acidity, overwetting
	Whole	87		

Project coordinator

D+LU University of Technolog

Teu INSTITUTE FOR ENERGY AND

Table 6. Global area and bioenergy potential of marginal lands (FAO, UNEP, 2014)

		Area, million	Biomass	Bioenergy
Source	Lands included	ha	yield,	potential,
			t/ha/year	EJ/year
Hoogwijk et al.	Abandoned agricultural land and	430-580	1-10	8 -110
2003	degraded grassland systems			
Tilman et al. 2006	Agriculturally abandoned and degraded	500	4.7	45
	lands			
Field et al. 2008	Abandoned pastoral lands and croplands	386	3.6	27
	not in use as urban or forest			
Campbell et al.	Abandoned pastoral lands and croplands	385-472	4.3	32-41
2008	not in use as urban or forest			
Nijsen et al. 2012	Based on downscaling of lands classified	1836	2.2–10.1	344
	in GLASOD database			
Wicke et al. 2011	Salt-affected soils (suitable for	971	3.1	56
ect coordinator Partner	woody biomass)			

Two ways of MagLs definition: 1 – by SQR, Mueller et al. (2007) (SEEMLA approach); 2 – by marginality indicators as separate criteria.

Sustainable exploitation of biomass for bioenergy from marginal lands in Europe

Figure 4. SQR rating developed by Mueller et al. (2007)

Project coordinator

Partner

CE.

SALIX

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 691874

Uncertainties in SQR methodology:

- required special methodic and complicated in calculation;

 low weight of ecological criteria (overflooding, slope steepness, contamination), including shallow rooting, in definition of marginal value.
 Ecological criteria are not attributed to soil fertility and must be seen as individual factors;

- best way applied to arable lands and can be the reason for the deviation of soil boundaries in the case of overall mapping of MagLs;

- not allow determining suitable bioenergy crop for MagL's practice;

- rang of SQR score is often indefinite in terms of bioenergy crops potential.

Partner

Final conference 20 November 2018 | Brussels

Pilot site in early March 2018

SQR = 40

Pilot site at the beginning of April 2018

Pilot site at the beginning of May 2018

FNR

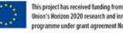
Partner

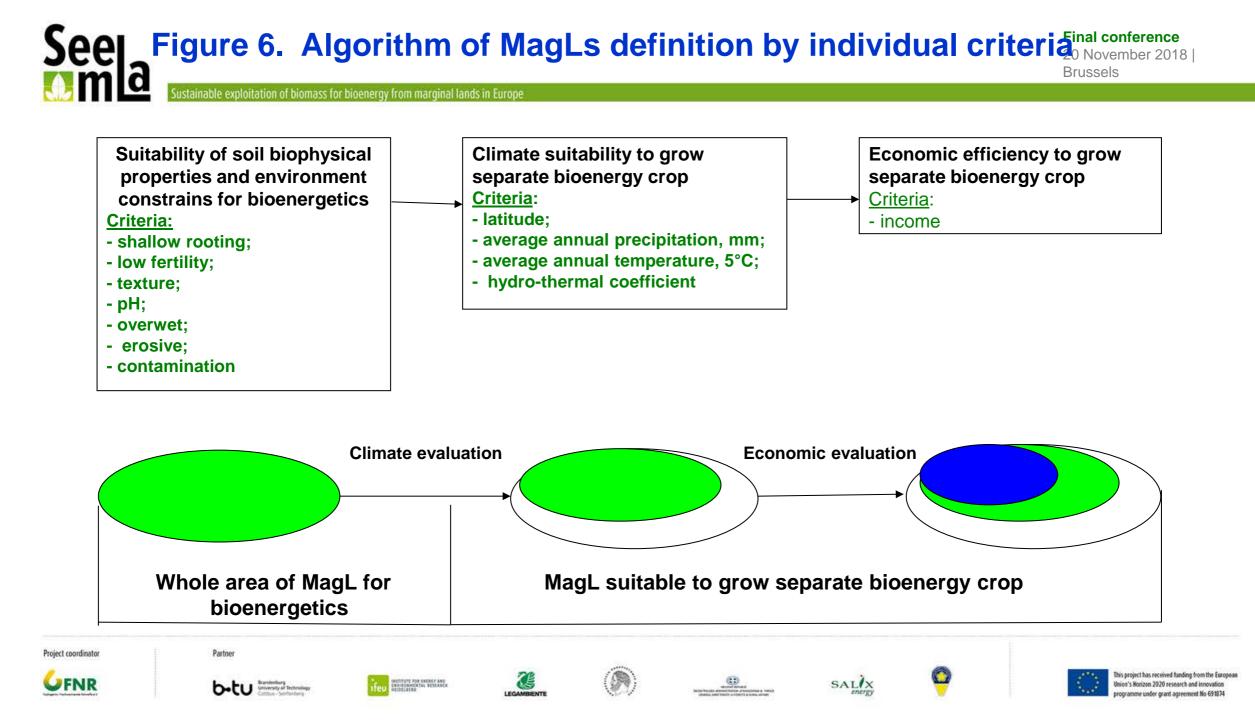
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 691874

<u>Uncertainties and advantages of individual criterion methodology</u> of MagLs definition:

- limited information for identification the rang of marginality indicators. It can be a reason for deviation of MagLs boundaries;
- weight of ecological indicators in MagLs definition is increased;
- better adopted for definition the overall area of MagLs. Allow proper extending boundaries over arable lands and pastures area;
 not require unified complicated methodology for soil samples analysis;
- easier adopted by stakeholders and thus of higher practical value

Partne





Sustainable exploitation of biomass for bioenergy from marginal lands in Europe

Table 7. Matrix of bioenergy crops suitable to MagLs in Europe

		Mediterranean P=300-500 mm T=14-17°C HTC=0.3-0.5	Maritime				
Categories of MagL	Marginality indicators		1000-700 mm; 10-15°C HTC=1.5-2	700-600 mm; <mark>8-10°C</mark> HTC=0.8-1.5	600-300 mm; 2-8°C HTC=0.8-0.5		
shallow rooting	within 25-35 cm	Pine, Switchgrass	Pine, Switchgrass	Pine, Switchgrass	Pine, Switchgrass		
low fertility	SQR scores ≤ 40	Black locust, Pine, Switchgrass	Willow, Poplar, Black locust, Pine, Miscanthus, Switchgrass	Willow, Poplar, Black locust, Pine, Miscanthus, Switchgrass	Black locust, Pine, Switchgrass		
stony texture	stones 10-20%	Black locust, Pine	Willow, Poplar, Black locust, Pine	Willow, Poplar, Black locust, Pine	Black locust, Pine		
sandy texture	sand 40 -60%	Black locust, Pine, Switchgrass	Willow, Poplar, Black locust, Pine, Miscanthus, Switchgrass	Willow, Poplar, Black locust, Pine, Miscanthus, Switchgrass	Black locust, Pine, Switchgrass		
clay texture	clay 50- 60%	Black locust, Pine, Switchgrass	Black locust, Pine, Miscanthus, Switchgrass	Poplar, Black locust, Pine, Miscanthus, Switchgrass	Black locust, Pine, Switchgrass		
salinic	salts 3.2 -16 dS/m	Black locust, Pine, Switchgrass	Poplar, Black locust, Pine, Miscanthus, Switchgrass	Poplar, Black locust, Pine, Miscanthus, Switchgrass	Black locust, Pine, Switchgrass		
sodicic	exchange sodium 4.8 -8%	Black locust, Pine, Switchgrass	Black locust, Pine, Miscanthus, Switchgrass	Black locust, Pine, Miscanthus, Switchgrass	Black locust, Pine, Switchgrass		
acidic	рН 4-5,5	Black locust, Pine, Switchgrass	Willow, Poplar, Black locust, Pine, Switchgrass	Willow, Poplar, Black locust, Pine, Switchgrass	Black locust, Pine, Switchgrass		
overwet	und.water 0-80 cm gleyic 0-40 cm	Pine, Switchgrass	Willow, Poplar, Pine, Miscanthus, Switchgrass	Willow, Poplar, Pine, Miscanthus, Switchgrass	Pine, Switchgrass		
eroded	slop 12- 15%	Pine, Switchgrass	Poplar, Black locust, Pine, Miscanthus, Switchgrass	Black locust, Pine, Miscanthus, Switchgrass	Pine, Switchgrass		
contaminated	over 10 mg L ⁻¹	Black locust, Pine, Switchgrass	Willow, Poplar, Black locust, Pine, Miscanthus, Switchgrass	Willow, Poplar, Black locust, Pine, Miscanthus, Switchgrass	Black locust, Pine, Switchgrass		

Project coordinator

.....

Partner

Conclusions:

1 – SQR methodology requires improvements in terms of increasing value of ecological indicators, giving them status of individual criteria;

2 – IT computer programme must reflect this individual approach in terms of ecological indicators;

- 3 To increase precision of marginality indicators, more data are required;
- 4 Climatic and economic features are beyond this methodology and measures to depict this criteria would be topical;
- 5 To involve economic criteria to marginality evaluation, next step are important:

- soil productivity have to be evaluated by unified index – yield of dry matter per hectare presented in ton of carbon;

- create data bank of prices for one ton of carbon per hectare of soils across Europe.

Partner

Final conference 20 November 2018 | Brussels

Sustainable exploitation of biomass for bioenergy from marginal lands in Europe

Thank you for your attention

UFNR

Partner

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 691874