Energizing marginal soils: A perennial cropping system for *Sida hermaphrodita*

Moritz Nabel¹, Hendrik Poorter¹, Vicky Temperton¹,², Silvia D Schrey¹, Robert Koller¹, Ulrich Schurr¹, and Nicolai D Jablonowski¹

¹Forschungszentrum Jülich, IBG-2: Plant Sciences, Germany (m.nabel@fz-juelich.de), ²Institute of Ecology, Leuphana University, Lüneburg, Germany

Motivation:
The cultivation of energy crops on farmland causes land use conflicts. An alternative is cultivation on marginal soil. We investigated the applicability of the perennial energy crop *Sida hermaphrodita* on marginal soil, using organic fertilization and legume intercropping. We investigated the value of digestate fertilization and compared it to mineral NPK-fertilization and an unfertilized control. Further we compare conventional broadcast application of biogas digestate to the application of localized digestate depots.

Biomass Yield:
- **Legume intercropping:**
 - Nitrogen derived from atmosphere (Nd, mesocosm) of *M. sativa* +
 - Digestate fertilization increased biological nitrogen fixation of *Medicago sativa*.
 - Legume intercropping increased the total biomass yield.
 - Legumes decreased the biomass yield of *Sida hermaphrodita*.

- **Digestate fertilization:**
 - Increased the soil carbon and nitrogen content in the top 30cm
 - Increased water holding capacity
 - Reduced nitrate concentration in the leachate
 - Increased the soil respiration
 - Reduced the wettability of the marginal substrate compared to mineral NPK fertilization.

- **Localized digestate depot fertilization:**
 - Increased the root system and induced the formation of a root cluster
 - Increased nutrient use efficiency
 - Had no effect on wettability
 - Temporarily had adverse effects on young seedlings of *Sida* compared to digestate broadcast application on marginal substrate.

Acknowledgments
Many thanks to ADRW Naturpower, Ameln, Rheinische Baustoffwerke, Inden, ECGN, Viersen, Freudenberger Saaten, Krefeld, Lucy Harrison, Marlene Müller, Edelgard Schölgens, Kerstin Nagel, Tim Schiffer, Andre Schallenberg, my PhD-fellows, Mrs. Willbold, Mrs. Santiago and their teams. Further we want to thank all helping hands for their support, the continuous measurements, the harvest and the processing of the plant material.

Literature: